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Universitetsparken 5, DK-2100 Copenhagen 0, Denmark 

Received 14 December 1993 

Abstract It is proven how the post-gelation behaviour originally suggested by Flory can be 
obtained as a result of a limiting process, passing from a finite to an infinite system. In a 
previous paper by the authors it was shown how the poa-gelation behaviour fim suggested by 
Stockmayer can be obtained by passing to the limit of an infinite system in a different way. It is 
thus demonstrated that different post-gelation solutions of Smoluchowski’s coagulation equation 
can be obtained by different limiting processes. 

1. Introduction 

The general form of Smoluchowski‘s coagulation equation is 

where k runs from 1 to W. It is well known that if the kernel, K,,k, is of the form 

Kj,k = ( A j  + B)(Ak + B )  (2) 

then the solution to (1) will exhibit an abnormal behaviour at some finite time, t,, known 
as the gelation point [l-71. After this point, mass conservation appears to be violated, a 
fact which is commonly connected with the formation of an infinitely large component, the 
gel, which contains the missing monomers. The solution of (1) for t < tg with Kkj given 
by (2 )  is generally agreed upon. In fact, Kokholm [8] proved rigorously the uniqueness of 
the solution in the case A = 1, B = 0 by a proof which clearly can be generalized to the 
general case A > 0, B > 0. 

As it stands, the solution of (1) is still unique past the gelation point when Kkj is given 
by (2) (this has also been proved rigorously by Kokholm [8] in the case A = 1, B = 0). 
However, as discussed by Ziff [2] and Ziff and Stell [3] this is not the only possible choice 
for the coagulation equation in the post-gelation state. The problem is that equation (1) does 
not include any reaction between the molecules in the sol and the gel. After the gelation 
point such reactions cannot necessarily be neglected. 

In the present article we shall focus our attentioxon the case A = 1, E = 0 in order to 
avoid unnecessary complications, i.e. we take 

Kj.k = j k .  (3) 
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Ziff [2] and Ziff and Stell [3] discuss three different models for the post-gelation kinetics, one 
model without my  interaction between the sol and the gel and two models with interactions 
between sol and gel. However, with the simplification introduced by using (3) the two 
models with reaction of the sol with the gel coalesce into one. 
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With the usual initial condition 

c.k(o) = Jk.1 (4) 

the solution without reaction between sol and gel and Kj.k given by (3) is 141 

kk-2 
q ( t )  = -tk-' exp(-kt) 

k! 

for 0 Q t 4 1, while the solution for t > 1 is given by 

(This is the result originally suggested by Stockmayer 191.) In the model with reaction 
between the gel and the molecules in the sol it is assumed that the monomer units of the 
gel have the same reactivity as in the sol. When (3) is inserted in (I), one obtains 

where M I  is given by 

m 
M~ = j c j .  

j=1 

Clearly, M I  is equal to the total number of monomer units in the sol. If the monomer units 
of the gel are included, then MI should remain unchanged as the point of gelation :- passed, 
since the total number of monomer units must be conserved. The initial condition (4) 
implies Ml = 1 and we obtain the following kinetic equation 

k- 1 

j=1  
Ck = j ( k  - j ) C j C k - j  - kck. 

It is easily seen that the solution to (9) is given by (5 )  for all values of t .  This is the 
behaviour which Flory [IO] has proposed. Since equation (9) for ck involves only cj with 
1 Q j Q k the system of differential equations can be treated as an ordinary system with a 
finite number of species, for which the uniqueness of the solution is easily inferred. 

In a previous article [l] we showed how the solution given by (5) for t Q 1 and by (6) 
for t > 1 can be obtained in a natural way as the limit of a finite system of equations. It 
is the main object of the present article to show the solution given by (5) for all values of 
f can also be obtained as the limit of a finite system. We shall, in fact, consider two very 
different approaches which both produce this result. 

In section 4 we prove a theorem which indicates that the post-gelation behaviour 
considered in this article is peculiar for kernels which behave like equation (2) for large j 
and k. 
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2. A truncated model 

The model we shall consider here is a truncated version of (7) and (S), where molecules 
which have more than N monomer units are allowed to react only with molecules which 
do not have more than N monomer units; i.e. in (1) we take 

if j <Nark< N 
if j > Nand k z N 

Kj,& = [ f 
This model satisfies 

Kj.k < N ( j  + k) (11) 

for all j and k and is therefore covered by the theorems proved by Heilmann [Ill,  from 
which we conclude that with the initial condition (4) the model has a unique solution which 
is analytical for positive values o f t ,  and that furthermore all the moments are analytical 
functions too. In particular, the first moment is constant and equal to 1. This implies that 
fork < N the behaviour of ck is governed by (9) and the solution given by (5) is valid for 
all t > 0. When we take the limit N + 00 this is clearly what we obtain for all k.  

3. A k i t e  Markov model 

One way to try to understand the behaviour of a macroscopic model is to create a 
corresponding microscopic model which contains only a finite number of particles and obtain 
the macroscopic model as a limit of an infinite number of particles ('the thermodynamic 
limit'). 

We assume that we start with M free monomer units at time t = 0. At later times they 
combine to larger molecules according to the following Markov process: at each positive 
integral value of t two different monomer units are chosen at random; if they belong to 
different molecules the two molecules are joined together to form one larger molecule. 

We shall not attempt a complete solution of this model. Rather, we shall focus OUT 
attention on the time dependence of the average value of the number of free monomer 
units. If we at time t have U free monomer units, then at time 7 + 1 we have U, U - 1 or 
U - 2 free monomer units with probability, respectively 

i.e. the probability distribution for the number of free monomer units p l (u ;  T) (= the 
probability of having precisely U free monomer units at time t) satisfies the recurrence 
relation 

The average value of the number of free monomer units at time t is given by 

M 
(ut; 7 )  = Cupl(u; 5 ) .  

"=a 
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From (12) one easily derives 
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M - 2  
M ( V I ;  t + 1) = - (n; t) 

( V I ;  T) = (I - 2/M)'M. (15) 
When one takes the limit M -+ M one should remember to scale the unit of time correctly. 
If one takes 

T = Mtj2  (16) 
where t is measured in a physical unit of time then a monomer unit reacts on average once 
per physical unit of time. We find that 

q ( t )  = lim ( u l ;  Mt/2)/M = lim exp[iMtln(l- 2/M)] = exp(-t). (17) 

Once more we have an analytical behaviour for all times-admittedly only for q; but this 
should be sufficient to indicate what to expect if one tries to find CZ, c3, etc. However, 
in order to convince the sceptical reader, we have included the computations for c? in an 
appendix. 

M-tm M+m 

4. A general theorem 

The truncation introduced in section 2 can, of course, be applied generally; i.e. for some 
kemel K1.k the corresponding truncated kernel, Kj,:), is defined by 

if j < N o r k <  N 
if j > Nand k > N. 

We shall be interested in this truncation in connection with kernels which satisfies the 
following condition (Leyvraz and Tschudi 141): 

Condition 1. A kernel Kj,k is said to satisfy this condition if Kj.k = Kk.j and one can find 
constants, r1, rz, . . ., such that 

Ki,:) = { 2 (18) 

rk lim - = 0 
k-m k Kj.k < rjrk 

Clearly, if the constants, r l ,  rz ,  . . ., satisfy the limiting condition above then we can find a 
constant A, such that 

rk 4 Ak k = 1,2, .... (20) 
This implies that if Kj.k satisfies condition 1 and we use the truncation given by (18) then 

(21) 
i.e. as in section 2, the truncated model is covered by the article by Heilmann [Ill and 
we can conclude that the truncated model has a unique, analytical solution where all the 
moments are analytical functions of time, t, for t real and positive. In particular the first 
moment, M I ,  is constant. We shall denote the solution to (1) using the truncated kemel by 

Leyvraz and Tschudi [4] also consider kernels which satisfy condition 1. They use a 
truncation to a finite system and prove some very important results about the existence of a 
convergent subsequence ([4], theorem 1). However, in their proof they do not actually use 
the finiteness of the truncated models, but only properties of the solution to the truncated 
models which, by the above statements, are also satisfied by the truncation given by (18). 
Therefore, the proof given by Leyvraz and Tschudi 141 remains valid if the present truncation 
is used and we conclude that we have the following theorem. 

K$) < A2N(j + k) 

cj.N. 
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Theorem 1 .  Let Kj,a be a kemel which satisfies condition 1 and let c j , ~  be the solution to 
(1) with the truncated kemel given by (18) and initial conditions which satisfy 

then there exists a solution to (1) with the kernel Kj.t and the same initial condition with 
the following properties 

(i) c j ( f )  > 0, E,"=, j c j ( t )  < 1 for all t > 0 
(ii) c j ( f )  is continuously differentiable for all t > 0 
(iii) there is a sequence Ni + CO such that 

for all j and f > 0. We even have 

5. Discussion 

In the truncated model considered here, the molecules with more than N monomer units 
play the role of the gel, just as they did in our first article [11. The difference being that 
in the previous article the molecules with more than N monomer units were not allowed 
to react at all, while in the present work we prohibit reactions only between two molecules 
which both contain more than N monomers. Viewed this way, the model considered here is 
a model with reaction between the sol and the ge1 in contrast to the finife model which we 
considered earlier [l] which did include reactions between the sol and the gel. The limiting 
results obtained in section 2 confirm the interpretation given by Ziff and Stell 131 that the 
post-gelation solution given by (6) obtains when the gel cannot react with the sol, while a 
post-gelation solution given by (5) is a possibility if the gel is allowed to react with the sol. 

The behaviour of the Markov model is perhaps more surprising. The Markov model 
does not appear to have any built-in sol-gel interaction. A clue to the explanation might be 
the single molecule with more than M 12 monomer units which eventually is created during 
the process. This molecule can react only with smaller molecules and in that sense it acts as 
the gel. Perhaps a more detailed solution of the model could illumininate this point further. 

Another aspect of the results of the present aaicle, when taken together with our previous 
article [I] on the same subject, is the demonsmeon of the problems connected with taking 
the limit of an infinite system. It can produce rather different results even if the finite system 
looks very similar. One should therefore not take the matter of choosing the right version 
of the finite system lightly. 

Finally, the theorem in section 4 shows that the above is peculiar to kernels which 
behave like equation (2) at least for large values of j and k .  If there the kernel satisfies 
condition 1 and thus grows more slowly with j and k then the truncation given by (18) will 
give a sequence with a convergent subsequence which converges to a solution to (1). This 
should not be surprising since, if the kernel satisfies condition 1 and the reactivity of the gel 
obtained as the limiting behaviour of large molecules in the sol, then the reactivity of the 
gel should be zero. Consequently, it should have no effect to allow the gel to react with the 
sol. If one wants an interesting reaction between the sol and the gel, then an independent 
hypothesis about the reaction between the sol and the gel is called for. 
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Appendix 

In this appendix we prove that the Markov model considered in section 3 does indeed 
give the expected limiting behaviour of the dimer concentration, c&). We start with 
simultaneous distribution of the number of monomers and the number of dimers, pz(u ,  p; T) 
(= the probability of having exactly U monomers and P dimers at time 5).  It satisfies the 
following recurrence relation (analogous to (12)): 

T A  Bak and 0 J Heilmann 

The average number of dimers at time t is given by 

From (AI)  one obtains 

where 

Equation (12) yields the recurrence relation 

which implies 

When this is combined with (A.3) one obtains 

where a is a constant, which is determined by the initial condition 

(p; 0) = 0. (A.8) 
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The final result for (p; t) is 

d = (;I ([ 1 + 1/r; ">IZ - 1) ' [ ("; 2)/(";'];. 

When the h i t  M + 00 is taken the expected result for c&) obtains: 

cz(f) = lim (p;  Mt/2)/M 
M-rW 

= M - m  l i  2 {exp [kMtln (1 + l / y i  '))I - 1 )  

x exp [ -Mf In ((M - N M  - 3))] 
M(M - 1) 

M - 1  
= lim - [ e x p [ t / M  + O(M-')] - 1) exp[iMr ln(1- 4/M + O(M-'))] 

= ;texp(-zr). (A.10) 
M + m  2 
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